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Abstract. We report a major project to develop integrated mathematical models for predicting the epidemiologic and
economic effects of malaria vaccines both at the individual and population level. The project has developed models of
the within-host dynamics of Plasmodium falciparum that have been fitted to parasite density profiles from malari-
atherapy patients, and simulations of P. falciparum epidemiology fitted to field malariologic datasets from a large
ensemble of settings across Africa. The models provide a unique platform for predicting both the short- and long-term
effects of malaria vaccines on the burden of disease, allowing for the temporal dynamics of effects on immunity and
transmission. We discuss how the models can be used to obtain robust cost-effectiveness estimates for a wide range of
malaria vaccines and vaccination delivery strategies in different eco-epidemiologic settings. This paper outlines for a
non-mathematical audience the approach we have taken and its underlying rationale.

INTRODUCTION

Despite considerable efforts over the last three decades,
and millions of dollars spent, there is still no registered vac-
cine against Plasmodium falciparum malaria. Several candi-
date malaria vaccines are now in phase I or phase II clinical
trials or have entered pre-clinical testing. There is a need for
rational approaches to decide how to prioritize different ma-
laria vaccine development programs and to plan for the de-
ployment of the vaccine(s) once efficacy has been established.

Mathematical models have been valuable decision-making
tools for vaccination strategies against infectious diseases, in
particular for those covered by the Expanded Program on
Immunization (EPI).1 Compared with other organisms that
cause infectious diseases, P. falciparum has a complex life
cycle, expressing many different potential targets for vaccines
and various candidate vaccines targeting different stages of
the parasite are in clinical development.2 The history of inef-
fective or partially effective control of malaria and failed vac-
cination attempts has led to the assumption that the efficacy
of a malaria vaccine is unlikely to approach 100%, but since
P. falciparum is one of the most frequent causes of morbidity
and mortality in areas where it is endemic,3–5 even a partially
protective vaccine may be highly cost-effective and a critically
important public health tool. However, it is not obvious what
minimum level of efficacy must be achieved before major
investments in vaccine production can be justified. The issue
arises that if a number of partially effective candidates with
different profiles become available, how should their devel-
opment be prioritized?

In this context, mathematical models of both the natural
history and epidemiology of malaria are needed to guide the
process of malaria vaccine development. Malaria models have
several roles that transcend their obvious limitations in mak-
ing precise predictions.6 They offer the possibility of system-
atically comparing the likely benefits of alternative types of
vaccines and vaccine delivery scenarios, of predicting likely
cost-effectiveness, and of identifying the role of vaccination

within integrated control approaches. In addition, they pro-
vide a means of identifying current gaps in knowledge that
need to be filled for rational planning of vaccine development
strategies.

Plasmodium falciparum malaria was one of the first patho-
gens to be described by a mathematical model.7 Subsequent
developments, i.e., the Ross-Macdonald models and the ma-
laria model of the Garki project8,9 have played seminal roles
in the design of malaria control policies and the global ma-
laria eradication campaign carried out in the 1950s and
1960s.10,11 However, these malaria models were not designed
to predict the likely impact of malaria vaccination.

We now describe the challenges that a model must address
if it is to provide useful predictions of the potential impact
and cost-effectiveness of malaria vaccines, and then outline
our malaria modeling project that aims to meet this objective.
The accompanying articles describe the different components
of our models, and the conclusions we have so far been able
to draw from them.

REQUIREMENTS OF A PREDICTIVE MODEL FOR
THE EFFECTS OF MALARIA VACCINES

Characteristics of individual P. falciparum infections.
A model for use in predicting the population impact of a
vaccine must embed within it a relevant description of the
course of individual infections. For many infectious diseases,
the necessary description is quite simple. For instance
measles, pertussis, rubella, and varicella have well-defined
latent periods, followed by acute episodes of morbidity and
infectiousness, making it realistic to use a common modeling
approach to address all of them. In contrast, the course of a
single infection of P. falciparum, such as that shown in Fig-
ure 1, is far more complex, with infectiousness and the risks of
acute morbidity and mortality varying as consequences of er-
ratic temporal patterns of parasite densities. A number of
recent models have analyzed how these patterns depend on
clonal antigenic variation of the parasite12–14 or on erythro-
cyte dynamics.15,16

A complete population model of P. falciparum dynamics
with sub-models of clonal antigenic variation and erythrocyte
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dynamics embedded within it is possible in principle, but
there is currently no consensus on how such a model should
be formulated. For the purpose of making epidemiologic pre-
dictions, such an approach would introduce an undesirable
level of complexity. However, an adequate model for the
population impact of a vaccine must contain a description of
a malaria infection that is not at variance with the biology and
must also contain representations of those processes that may
be modified by vaccination.

Short-term effects on the vaccinated individual. The effects
on morbidity and mortality of a partially protective vaccine
are likely to be more complex than the effects on primary
infections in the non-immune host.17 Even if the effect of the
vaccine is simply to reduce the force of infection, the short-
term consequences in terms of morbidity and mortality risks
are not simply proportional to the reduction in infection rate.
Pre-existing immunity and heterogeneity in the efficacy of a
vaccine both lead to reduction in the effectiveness in prevent-
ing infection.18 The efficacy of vaccination against post-
infection outcomes such as morbidity and mortality may be
very different from that against infection.19 A model to pre-
dict population impact of a vaccine needs to include these
processes that modulate the impact of infection.

Long-term effects on the vaccinated individual. Field trials
of malaria vaccines carried out thus far consider only impacts
that can be measured during the 6–18 months follow-up pe-
riods.20,21 Unfortunately, the longer-term consequences of a
vaccination program cannot simply be extrapolated from the
results of such trials. For example, some benefits of vaccina-
tion may take an extended period to become evident. This
will be particularly the case if there is natural boosting or if
there are effects on transmission dynamics. Conversely, vac-
cination may result merely in delay of morbidity and mortal-
ity in some individuals, in which case field trials may suggest
a greater benefit than will be observed during implementation
and scaling up of malaria vaccine programs.

The introduction of insecticide-treated nets for malaria
control has been accompanied by extensive debate about pos-
sible long-term effects. Related issues arise with regard to
vaccines. Since reduction in exposure to the parasite will de-
lay the acquisition of immunity, it has been conjectured that
other factors being equal, long-term transmission control
might only delay severe disease or even death.22–24 Supported

by data from long-term follow-up of transmission control pro-
jects,25–28 others have contended that the benefits will out-
weigh any such potential effects.29–32 Such possible delays in
acquisition of immunity need to be considered in appraisals of
the cost-effectiveness of malaria interventions, including vac-
cination.33

Some of the long-term effects of malaria control are ex-
tremely difficult to predict. These include effects on children’s
attendance rates and performance at school, higher education
achievements, aspirations and forgone opportunities to enter
competitive job markets, general well-being, and equity.34 On
the macroeconomic scale, malaria has measured effects on
foreign direct investment, population mobility, tourism, and
international trade, but the causal relationships of how ma-
laria delays social and economic advancement of whole soci-
eties remain elusive.35,36

Interdependence of hosts. An epidemiologic model for the
effects of a vaccination program must consider the depen-
dence between events in different individuals. All malaria
vaccine field trials done so far have been designed with the
objective of directly protecting the vaccinated individuals ei-
ther from infection or from consequent morbidity and mor-
tality, and have not considered broader effects on trans-
mission. Evaluations of transmission effects do not form part
of standard methods for evaluating vaccines against pre-
erythrocytic or asexual blood stages of malaria.37

The importance for mathematical models of the depen-
dence between events in different individuals was already rec-
ognized by Ronald Ross some 90 years ago,38 and has been
the core of most subsequent malaria modeling exercises. This
is the key element that distinguishes infectious disease mod-
eling from that of non-infectious diseases.39 The analysis of
this dependence has been the objective of most previous mod-
els for vaccination against malaria,40–43 which have concen-
trated on identifying the conditions for controlling or inter-
rupting transmission.

The current burden of malaria morbidity and mortality,
particularly in sub-Saharan Africa, is so large3–5,44 that even a
vaccine that modifies the course of infection in only a pro-
portion of recipients without any effects on transmission may
be worth pursuing. Transmission effects should not be ig-
nored, but need to be just one part of a model that includes
also the independent effects.

Cost-effectiveness analysis (CEA). This has become in-
creasingly important for evidence-based decision-making in
health care in resource-constrained settings. There is now
consensus among economists about the main points of CEA
methodology,45,46 although there continues to be important
advances in techniques related to CEA such as modeling
uncertainty.47 Little work has been done on the cost-
effectiveness of malaria vaccination,48 and this has not con-
sidered the potential savings in health care costs or produc-
tivity of workers. However, CEA of malaria interventions,
even when based on careful costing,33,49–51 have generally not
taken into account either the transmission effects or the dy-
namics of the long-term impact. An adequate model for CEA
of malaria vaccines needs to consider these elements.

STRUCTURE OF THIS PROJECT

None of the existing malaria models satisfies all of the re-
quirements articulated above, so we have been able to make

FIGURE 1. Course of a single infection of Plasmodium falciparum.
Data of a characteristic malariatherapy patient (Patient S-1044).85

Dashed line � gametocytes; solid line � asexual parasites. (Repro-
duced with permission of the American Society of Tropical Medicine
and Hygiene).
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only limited use of them in developing new models to make
quantitative predictions of the potential impact of vaccination
against P. falciparum malaria.

The main component of the project is a stochastic simula-
tion model for the epidemiology of P. falciparum that incor-
porates insights from the within-host models, but is imple-
mented independently of them.49–55 We have used this epi-
demiologic model to simulate the results56 from the recently
completed trials of the malaria vaccine RTS,S/AS02 carried
out in adult men in The Gambia57 and in children 1–5 years of
age in Mozambique.21 The model has also been used to pre-
dict the potential epidemiologic impact of such a vaccine,58

and the cost-effectiveness of introducing it via the EPI.59 To
make these predictions, we incorporated costing data59,60 and
a model for the health system currently in place in a low-
income country context, based largely on data from Tanzania.61

In addition, we have also made progress on developing
models of within-host dynamics of malaria.62 This work is
intended to complement earlier within-host models,13,63 spe-
cifically with a view to providing insights relevant to modeling
vaccination, useful for informing the epidemiologic models.
The within-host models have been fitted to data from malari-
atherapy patients and lead to conclusions that are particularly
relevant to the modeling of asexual blood-stage vaccination.

STRATEGY OF EPIDEMIOLOGIC MODELING

Processes modeled. To give reasonable predictions, our
models need to simulate the processes that may be affected by
vaccination, and also to capture the relationships between
these processes and outcomes of public health importance.
Figure 2 gives a simplified illustration of how these processes
and outcomes relate to the malaria transmission cycle. For
our model, we use as input the seasonal pattern of transmis-
sion (measured by the entomologic inoculation rate [EIR]),
and make predictions of the consequent infection rate of hu-
mans.54 We then consider how this relationship may be modi-
fied by naturally acquired immunity54 or by vaccination.56

We embed an empirical description of within-host asexual
parasite densities in the model for the infection process to
give stochastic predictions of parasite densities as a function

of the age of a malaria infection, and model the effect of
immunity to asexual blood stages by considering how the dis-
tribution of parasite densities is modified in the semi-immune
host.50 This model for immunity provides a straightforward
basis for analyzing possible effects of asexual blood stage vac-
cines, which can be simulated by a function that reduces para-
site densities.

We analyze the relationship between asexual parasite den-
sities and infectivity to the vector in malariatherapy patients
to derive a model for the transmission to the mosquito vec-
tor.53 This relationship is used to simulate the transmission-
blocking effects of vaccines. This makes use of the simulated
population distribution of parasite densities to predict the
human infectious reservoir for P. falciparum.49

Acute episodes of clinical malaria are predicted to occur as
a consequence of high parasite densities.55 A further stochas-
tic sub-model is used to specify when these lead to severe
disease or malaria-related mortality.51,52

An important simplification in our strategy is to avoid pre-
dicting those intermediate variables whose quantitative rela-
tionships with epidemiologic outcomes are very uncertain.
We do not dissect protection during the pre-erythrocytic
stages of infection into that against sporozoites and that
against liver stages because effects on these different pre-
erythrocytic stages cannot be distinguished in large-scale field
studies. We do not model levels of immune effector mol-
ecules, such as antibodies or cytokines. We consider levels of
gametocytemia only as part of the validation of the sub-model
for infectiousness because the quantitative relationships be-
tween gametocytemia and infectiousness to mosquitoes are
problematic.53,64 These simplifications do not compromise
the ability of our models to make predictions of the effective-
ness and cost-effectiveness of vaccines.

Stochastic simulation. We use individual-based simulations
with five-day time steps to implement our models of P. falci-
parum epidemiology. This approach makes it possible to
model populations of hosts and infections, each characterized
by a set of continuous and state variables (parasite densities,
infection durations, and immune status variables for indi-
vidual hosts). This approach can allow more realistic consid-
eration of the stochastic interactions between individual hosts

FIGURE 2. Simplified diagram of the malaria transmission cycle. Dashed arrows indicate the points at which vaccines are intended to act.
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and pathogens than the use of compartment models.64 It pro-
vides estimates of distributions of outcomes, rather than only
predicting averages. A disadvantage is that it is computation-
ally more intensive than the deterministic alternatives. All
modules shown in Figure 3 (except that to predict the preva-
lence of anemia) were implemented using the FORTRAN
programming language using numerical and statistical librar-
ies provided by the Numerical Algorithms Group (http://
www.nag.co.uk/). These core components were wrapped in a
application written in Java (http://sun.java.com) and accessed
via the Java Native Interface (http://java.sun.com/j2se/1.4.2/
docs/guide/jni)65 for three reasons. First, implementation of
data-holding components, which provide the input data for
the core model and store the generated results, is easier with
a programming language that supports object-oriented pro-
gramming. Second, we developed a graphical user interface to
simplify the process of defining simulation scenarios and to
facilitate exploratory analysis of model predictions. Third, the
use of the Java Remote Method Invocation (http://
java.sun.com/products/jdk/rmi/)66 allowed us to distribute the
computation to a large number of computers and thereby
cope with the considerable computational requirements
posed by the data fitting process. The model for prediction of
anemia was implemented as part of the analysis module in
Java.

Fitting to real data. The uncertainty inherent in complex
models needs to be minimized by ensuring that all elements of
the model conform as much as possible to reality. There have
been only limited efforts to optimize complex dynamic mod-
els of malaria by formal fitting to field data.9,67–69 Even these
studies optimized only a limited number of parameters. Most
previous malaria models have at best been only superficially
validated against field observations.

In contrast, we have fitted different components of our
model to a wealth of datasets from many different ecologic
and epidemiologic settings. We then validated them by com-
paring our predictions with further field data. Stochastic
simulations are more difficult to fit to data than are deter-
ministic models. Our approach leads to implicit statistical
models requiring many repeated simulations to make ap-
proximate parameter estimates.70 We were able to fit these
using a simulated annealing algorithm,71,72 distributing simu-
lations across our local computer network.

Modular structure. Since the computational demands and
complexity of the fitting process meant that it was not feasible
to fit our overall model to all the relevant data simulta-
neously, different sub-models were fitted separately. The
analyses described in subsequent reports49–55,73 contributed
sub-models to the overall model of malaria epidemiology
(Figure 3).

FIGURE 3. Key processes and relationships simulated by the dynamic models of Plasmodium falciparum transmission and morbidity.

SMITH AND OTHERS4



Our model for how infection rates are related to the EIR in
the naive host54 was fitted to data from The Gambia74 and
Kenya.75 The core (parasitologic) model for infection and
parasite densities50,54 was jointly fitted to datasets from
Ghana, Nigeria, and Tanzania. The sub-model to predict
clinical episodes55 was fitted to data from Senegal conditional
on the parasitologic model and uses the same point estimates
of the parameters of the parasitologic model. Similarly, the
sub-model for severe malaria52 is conditional on both the
parasitologic and clinical sub-models. Those for mortality52

depend on the parasitologic, clinical, and severe malaria sub-
models (Figure 3) and, like the model for severe malaria,
were fitted to rates from multiple African settings.

These sub-models were fitted to field data quantifying the
relationship between malaria transmission and the outcome
of interest. Each sub-model was thus fitted conditionally on
the parameter estimates made at earlier stages in the fitting
process (i.e., on the sub-models higher up in Figure 3). This
approach made it possible for us to allow for the dynamic
effects of the treatment of clinical episodes, an important
consideration when we use the model to predict the impact of
interventions.

The sub-models for the infection of the vector49,53 and for
anemia73 were fitted to independent datasets. To make pre-
dictions of vector infection rates and of anemia prevalence we
apply the estimated functions to the outputs of the parasito-
logic sub-model.

Equations. The equations of the epidemiologic model are
summarized in Appendix 1. In view of the modular structure
of the project, they are grouped around six main components:
infection of the human host, characteristics of the simulated
infections, infectivity to mosquitoes, acute morbidity, mortal-
ity, and anemia.

STRENGTHS AND LIMITATIONS OF OUR
MODELING APPROACH

Strengths. It may be unrealistic to expect any model to de-
liver quantitative predictions of the cost-effectiveness of ma-
laria vaccination with any degree of confidence. However our
models can certainly suggest where to look for possible
counter-intuitive impacts of vaccination. At each stage in our
modeling approach, we have examined what are the main
uncertainties that could impinge on the estimates of out-
comes, and thus explored what are the important gaps in
knowledge of malaria epidemiology. We also compare the fit
of competing models, and thus choose between alternative
model formulations. Although each component of the project
is linked (Figure 3), each paper leads to its own conclusions.
Many of these conclusions have bearing on vaccine develop-
ment strategies independently of their consequences for
quantitative predictions of vaccine impact.

Limitations. With all models of biology, there is a trade-off
between parsimony and the fitting of details to what is know
about the dynamics being modeled. A model is only useful if
it represents a simplification, indicating which elements of the
processes being analyzed are important. However, the better
the fit to reality, the more likely are the predictions to be
accurate. In the case of malaria the need for accurate models
required simulation of many different processes. The require-
ment for a good fit to field data has thus committed us to
developing a model with many different components and pa-

rameters. At present, some of the processes we modeled are
ill-understood or lack relevant data, leading to uncertainties
that cannot be captured by statistical measures of impreci-
sion.

One role of modeling is to identify such gaps in knowledge.
There are also other simplifications that limit the extent to
which our models should be applied uncritically. The models
developed so far do not address the issue of differences be-
tween ethnic groups in their response to infection, although
such differences are known to exist within the savannah zone
of West Africa,76,77 the source of many of the data available
to us, and are likely to be even more important in extensions
of the model outside Africa. Our models do not consider
effects of micro-heterogeneity in transmission within the hu-
man population.78 This limits their applicability as a tool for
estimating the basic reproductive number, and thus for pre-
dicting the conditions for elimination.

Our models do not capture all the epidemiologic phenom-
ena that are relevant to immunity to malaria. In endemic
areas, chronic asymptomatic infection appears to play a role
in effective clinical immunity79 and may be necessary for
long-term maintenance of immune memory.80 These phe-
nomena, sometimes referred to as premunition, very likely
involve several distinct immunologic mechanisms. In our
models concomitant infections induce clinical immunity
mainly by increasing the threshold level of parasitemia nec-
essary for an acute malaria episode.55 A further element is
innate immunity to hepatic stages which could be stimulated
by either hepatic or erythrocytic stages of P. falciparum. We
allow for this implicitly by including density-dependent regu-
lation of the infection process, but have so far not been able
to explicitly model effects of erythrocytic infections on the
control of hepatic stages.54 We do not make any allowance for
decay of either pre-erythrocytic or blood stage immunity be-
cause we have no good quantitative data from which to esti-
mate rates of decay. The limited field data that do exist sug-
gest that even exposure many years in the past provides im-
portant clinical protection.81

In the long-term, vaccines are likely to exert selective ef-
fects on parasite populations, and selection in favor of non-
vaccine parasite genotypes has already been demonstrated in
one phase IIb trial carried out in Papua New Guinea.82 Se-
lection of other parasite traits, such as virulence83 is also pos-
sible but we contend that an adequate epidemiologic model is
a pre-requisite for convincing models of such effects.84

CONCLUSION

In this introductory paper, we have provided a succinct
overview of our approach for developing a dynamic math-
ematical model for prediction of the epidemiologic and eco-
nomic impact of a malaria vaccine. An important strength of
this framework is that it ties together an ensemble of inter-
connected sub-models validated against actual field data from
various settings across Africa. In view of the complex malaria
life cycle and gaps in our current knowledge, there are inher-
ent limitations attached to some of these components, which
in turn influence the overall model outcomes. However we
are confident that the material presented in the remaining 14
papers provides a sound foundation on which improved mod-
els can be built. To the best of our knowledge, this is the most
comprehensive population-based simulation of malaria yet
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developed. It represents a major new tool for rational plan-
ning of malaria vaccine development, and can readily be
adapted to assess efficacy and cost-effectiveness of other ma-
laria control interventions used singly or in combination. This
makes it possible to integrate epidemiologic and economic
considerations in rational formulation of policy to reduce the
intolerable burden of malaria.

Received September 18, 2005. Accepted for publication November
25, 2005.

Acknowledgments: We thank Dan Anderegg for editorial assistance,
and the members of the Technical Advisory Group (Michael Alpers,
Paul Coleman, David Evans, Brian Greenwood, Carol Levin, Kevin
Marsh, F. Ellis McKenzie, Mark Miller, and Brian Sharp), the Project
Management Team at the Program for Appropriate Technology in
Health (PATH) Malaria Vaccine Initiative, and GlaxoSmithKline
Biologicals S.A for their assistance.

Financial support: The mathematical modeling study was supported
by the PATH Malaria Vaccine Initiative and GlaxoSmithKline
Biologicals S.A.

Disclaimer: Publication of this report and the contents hereof do not
necessarily reflect the endorsement, opinion, or viewpoints of the
PATH Malaria Vaccine Initiative or GlaxoSmithKline Biologicals S.A.

Authors’ addresses: Thomas Smith, Nicolas Maire, Amanda Ross,
Fabrizio Tediosi, Guy Hutton, Jürg Utzinger, and Marcel Tanner,
Swiss Tropical Institute, Socinstrasse 57, PO Box, CH-4002, Basel,
Switzerland, Telephone: 41-61-284-8273, Fax: 41-61-284-8105,
E-mails: Thomas-A.Smith@unibas.ch, nicolas.maire@unibas.ch,
amanda.ross@unibas.ch, fabrizio.tediosi@unibas.ch, guy.hutton@
unibas.ch, juerg.utzinger@unibas.ch, and marcel.tanner@unibas.ch.
Gerry F. Killeen, Ifakara Health Research and Development Centre,
Ifakara, Kilombero District, Tanzania, Telephone: 255-748-477-118,
Fax: 255-23-262-5312, E-mail: gkilleen@ihrdc.or.tz. Louis Molineaux,
Peney-Dessus, CH-1242 Satigny, Geneva, Switzerland. Klaus Dietz,
Department of Medical Biometry, University of Tübingen, West-
bahnhofstrasse 55, 72070 Tübingen, Germany, Telephone:
49-7071-29-78253, Fax: 49-7071-29-5075, E-mail: klaus.dietz@
uni-tuebingen.de.

Reprint requests: Thomas Smith, Swiss Tropical Institute, Socin-
strasse 57, PO Box, CH-4002, Basel, Switzerland.

REFERENCES

1. Anderson RM, May RM, 1991. Infectious Diseases of Humans:
Dynamics and Control. Oxford, United Kingdom: Oxford Uni-
versity Press.

2. Ballou WR, Arevalo-Herrera M, Carucci D, Richie TL, Corradin
G, Diggs C, Druilhe P, Giersing BK, Saul A, Heppner DG,
Kester KE, Lanar DE, Lyon J, Hill AV, Pan W, Cohen JD,
2004. Update on the clinical development of candidate malaria
vaccines. Am J Trop Med Hyg 71 (2 Suppl): 239–247.

3. Snow RW, Guerra CA, Noor AM, Myint HY, Hay SI, 2005. The
global distribution of clinical episodes of malaria. Nature 434:
214–217.

4. Breman JG, Egan A, Keusch GT, 2001. The intolerable burden
of malaria: a new look at the numbers. Am J Trop Med Hyg 64
(Suppl): iv–vii.

5. Greenwood B, Bojang K, Whitty C, Targett G, 2005. Malaria.
Lancet: 1487–1498.

6. McKenzie FE, Samba EM, 2004. The role of mathematical mod-
eling in evidence-based malaria control. Am J Trop Med Hyg
71 (Suppl): 94–96.

7. Ross R, 1911. The Prevention of Malaria. Second edition. Lon-
don: Murray.

8. Dietz K, Molineaux L, Thomas A, 1974. A malaria model tested
in the African savannah. Bull World Health Org 50: 347–357.

9. Molineaux L, Gramiccia G, 1980. The Garki Project. Geneva:
World Health Organization.

10. Macdonald G, 1957. The Epidemiology and Control of Malaria.
London: Oxford University Press.

11. Macdonald G, Cuellar CB, Foll CV, 1968. The dynamics of ma-
laria. Bull World Health Organ 38: 743–755.

12. Paget-McNicol S, Gatton M, Hastings I, Saul A, 2002. The Plas-
modium falciparum var gene switching rate, switching mecha-
nism and patterns of parasite recrudescence described by
mathematical modelling. Parasitology 124: 225–235.

13. Molineaux L, Diebner HH, Eichner M, Collins WE, Jeffery GM,
Dietz K, 2001. Plasmodium falciparum parasitaemia described
by a new mathematical model. Parasitology 122: 379–391.

14. Recker M, Nee S, Bull P, Kinyanjui S, Marsh K, Newbold C,
Gupta S, 2004. Transient cross-reactive immune responses can
orchestrate antigenic variation in malaria. Nature 429: 555–558.

15. McQueen PG, McKenzie FE, 2004. Age-structured red blood cell
susceptibility and the dynamics of malaria infections. Proc Natl
Acad Sci USA 101: 9161–9166.

16. Jakeman GN, Saul A, Hogarth WL, Collins WE, 1999. Anaemia
of acute malaria infections in non-immune patients primarily
results from destruction of uninfected erythrocytes. Parasitol-
ogy 119: 127–133.

17. Halloran ME, Struchiner CJ, Spielman A, 1989. Modeling ma-
laria vaccines. II: Population effects of stage-specific malaria
vaccines dependent on natural boosting. Math Biosci 94: 115–
149.

18. Halloran ME, Longini IM Jr, Struchiner CJ, 1996. Estimability
and interpretation of vaccine efficacy using frailty mixing mod-
els. Am J Epidemiol 144: 83–97.

19. Alonso PL, Molyneux ME, Smith T, 1995. Design and method-
ology of field-based intervention trials of malaria vaccines.
Parasitol Today 11: 197–200.

20. Alonso PL, Smith T, Schellenberg JR, Masanja H, Mwankusye S,
Urassa H, Bastos de Azevedo I, Chongela J, Kobero S, Me-
nendez C, 1994. Randomised trial of efficacy of SPf66 vaccine
against Plasmodium falciparum malaria in children in southern
Tanzania. Lancet 344: 1175–1181.

21. Alonso PL, Sacarlal J, Aponte J, Leach A, Macete E, Milman J,
Mandomando I, Spiessens B, Guinovart C, Espasa M, Bassat
Q, Aide P, Ofori-Anyinam O, Navia MM, Corachan S, Ceup-
pens M, Dubois MC, Demoitie MA, Dubovsky F, Menendez
C, Tornieporth N, Ballou WR, Thompson R, Cohen J, 2004.
Efficacy of the RTS,S/AS02A vaccine against Plasmodium fal-
ciparum infection and disease in young African children: ran-
domised controlled trial. Lancet 364: 1411–1420.

22. Snow R, Marsh K, 1995. Will reducing Plasmodium falciparum
transmission alter malaria mortality among African children?
Parasitol Today 11: 188–190.

23. Trape JF, Rogier C, 1996. Combating malaria morbidity and mor-
tality by reducing transmission. Parasitol Today 12: 236–240.

24. Snow R, Omumbo J, Lowe B, Molyneux CS, Obiero JO, Palmer
A, Weber MW, Pinder M, Nahlen B, Obonyo C, Newbold C,
Gupta S, Marsh K, 1997. Relation between severe malaria
morbidity in children and level of Plasmodium falciparum
transmission in Africa. Lancet 349: 1650–1654.

25. Newman P, 1965. Malaria Eradication and Population Growth,
with Special Reference to Ceylon and British Guiana. Ann Ar-
bor, MI: University of Michigan, Bureau of Public Health Eco-
nomics. Research Series.

26. Bradley DJ, 1991. Morbidity and mortality at Pare-Taveta, Kenya
and Tanzania, 1954–66: The effects of a period of malaria con-
trol. Feachem RG, Jamison DT, eds. Disease and Mortality in
Sub-Saharan Africa. Washington, DC: World Bank.

27. Binka F, Hodgson A, Adjuik M, Smith T, 2002. Mortality in a
seven-and-a-half-year follow-up of a trial of insecticide-treated
mosquito nets in Ghana. Trans R Soc Trop Med Hyg 96: 597–
599.

28. Diallo DA, Cousens SN, Cuzin-Ouattara N, Nebie I, Ilboudo-
Sanogo E, Esposito F, 2004. Child mortality in a West African
population protected with insecticide-treated curtains for a pe-
riod of up to 6 years. Bull World Health Organ 82: 85–91.

29. D’Alessandro U, 1997. Severity of malaria and level of Plasmo-
dium falciparum transmission. Lancet 350: 362.

30. Lengeler C, Smith T, Armstrong Schellenberg J, 1997. Focus on
the effect of bednets on malaria morbidity and mortality. Para-
sitol Today 13: 123–124.

31. Molineaux L, 1997. Nature’s experiment: what implications for
malaria prevention? Lancet 349: 1636–1637.

32. Smith T, Killeen G, Lengeler C, Tanner M, 2004. Relationships

SMITH AND OTHERS6



between the outcome of Plasmodium falciparum infection and
the intensity of transmission in Africa. Am J Trop Med Hyg 71
(Suppl 2): 80–86.

33. Coleman PG, Goodman CA, Mills A, 1999. Rebound mortality
and the cost-effectiveness of malaria control: potential impact
of increased mortality in late childhood following the introduc-
tion of insecticide treated nets. Trop Med Int Health 4: 175–186.

34. Holding PA, Snow R, 2001. Impact of Plasmodium falciparum
malaria on performance and learning: review of the evidence.
Am J Trop Med Hyg 64: 68–75.

35. Sachs J, Malaney P, 2002. The economic and social burden of
malaria. Nature 415: 680–685.

36. Utzinger J, Tozan Y, Doumani F, Singer BH, 2002. The economic
payoffs of integrated malaria control in the Zambian copper-
belt between 1930 and 1950. Trop Med Int Health 7: 657–677.

37. World Health Organisation, 1997. Guidelines for the Evaluation
of Plasmodium falciparum Vaccines in Populations Exposed to
Natural Infections. Geneva: World Health Organization. TDR/
MAL/VAC/97.

38. Ross R, 1916. An application of the theory of probabilities to the
study of a priori pathometry, Part I. Proc R Soc A 92: 204–230.

39. Halloran ME, Struchiner CJ, 1992. Modeling transmission dy-
namics of stage-specific malaria vaccines. Parasitol Today 8:
77–85.

40. Anderson RM, May RM, Gupta S, 1989. Non-linear phenomena
in host-parasite interactions. Parasitology 99 (Suppl): S59–S79.

41. Struchiner CJ, Halloran ME, Spielman A, 1989. Modeling ma-
laria vaccines. I: New uses for old ideas. Math Biosci 94: 87–
113.

42. De Zoysa AP, Herath PR, Abhayawardana TA, Padmalal UK,
Mendis KN, 1988. Modulation of human malaria transmission
by anti-gamete transmission blocking immunity. Trans R Soc
Trop Med Hyg 82: 548–553.

43. Koella JC, 1991. On the use of mathematical models of malaria
transmission. Acta Trop 49: 1–25.

44. Breman JG, Alilio MS, Mills A, 2004. Conquering the intolerable
burden of malaria: what’s new, what’s needed: a summary. Am
J Trop Med Hyg 71 (Suppl 2): 1–15.

45. Drummond MB, O’Brien B, Stoddart GL, Torrance G, 1997.
Methods for the Economic Evaluation of Health Care Pro-
grammes. Second edition. Oxford, United Kingdom: Oxford
University Press.

46. Gold MR, Gold SR, Weinstein MC, 1996. Cost-Effectiveness in
Health and Medicine. Oxford, United Kingdom: Oxford Uni-
versity Press.

47. Malarky G, 1999. Economic Evaluation in Healthcare. Auckland,
New Zealand: Adis International.

48. Graves PM, 1998. Comparison of the cost-effectiveness of vac-
cines and insecticide impregnation of mosquito nets for the
prevention of malaria. Ann Trop Med Parasitol 92: 399–410.

49. Killeen GF, Ross A, Smith T, 2006. Infectiousness of malaria-
endemic human populations to vectors. Am J Trop Med Hyg
75 (Suppl 2): 38–45.

50. Maire N, Smith T, Ross A, Owusu-Agyei S, Dietz K, Molineaux
L, 2006. A model for natural immunity to asexual blood stages
of Plasmodium falciparum in endemic areas. Am J Trop Med
Hyg 75 (Suppl 2): 19–31.

51. Ross A, Smith T, 2006. The effect of malaria transmission inten-
sity on neonatal mortality in endemic areas. Am J Trop Med
Hyg 75 (Suppl 2): 74–81.

52. Ross A, Maire N, Molineaux L, Smith T, 2006. An epidemiologic
model of severe morbidity and mortality caused by Plasmo-
dium falciparum. Am J Trop Med Hyg 75 (Suppl 2): 63–73.

53. Ross A, Killeen GF, Smith T, 2006. Relationship of host infec-
tivity to mosquitoes and asexual parasite density in Plasmo-
dium falciparum. Am J Trop Med Hyg 75 (Suppl 2): 32–37.

54. Smith T, Maire N, Dietz K, Killeen GF, Vounatsou P, Molineaux
L, Tanner M, 2006. Relationships between the entomologic
inoculation rate and the force of infection for Plasmodium
falciparum malaria. Am J Trop Med Hyg 75 (Suppl 2): 11–18.

55. Smith T, Ross A, Maire N, Rogier C, Trape JF, Molineaux L,
2006. An epidemiologic model of the incidence of acute illness
in Plasmodium falciparum malaria. Am J Trop Med Hyg 75
(Suppl 2): 56–62.

56. Maire N, Aponte JJ, Ross A, Thompson R, Alonso P, Utzinger J,
Tanner M, Smith T, 2006. Modeling a field trial of the RTS,S/

ASO2A malaria vaccine. Am J Trop Med Hyg 75 (Suppl 2):
104–110.

57. Bojang K, Milligan PJM, Pinder M, Vigneron L, Alloueche A,
Kester KE, Ballou WR, Conway D, Reece WHH, Gothard P,
Yamuah L, Delchambre M, Voss G, Greenwood BM, Hill A,
McAdam KP, Tornieporth N, Cohen JD, Doherty T, 2001.
Efficacy of RTS,S/AS02 malaria vaccine against Plasmodium
falciparum infection in semi-immune adult men in The Gam-
bia: a randomised trial. Lancet 358: 1927–1934.

58. Maire N, Tediosi F, Ross A, Smith T, 2006. Predictions of the
epidemiologic impact of introducing a pre-erythrocytic malaria
vaccine into the expanded program on immunization in sub-
Saharan Africa. Am J Trop Med Hyg 75 (Suppl 2): 111–118.

59. Tediosi F, Hutton G, Maire N, Smith T, Ross A, Tanner M 2006.
Predicting the cost-effectiveness of introducing a pre-
erythrocytic malaria vaccine into the expanded program on
immunization in Tanzania. Am J Trop Med Hyg 75 (Suppl 2):
131–143.

60. Hutton G, Tediosi F, 2006. The costs of introducing a malaria
vaccine into the expanded program on immunization in Tan-
zania. Am J Trop Med Hyg 75 (Suppl 2): 119–130.

61. Tediosi F, Maire N, Smith T, Hutton G, Utzinger J, Ross A,
Tanner M, 2006. An approach to model the costs and effects of
case management of Plasmodium falciparum malaria in sub-
Saharan Africa. Am J Trop Med Hyg 75 (Suppl 2): 90–103.

62. Dietz K, Raddatz G, Molineaux L, 2006. A mathematical model
of the first wave of Plasmodium falciparum asexual parasit-
emia in non-immune and vaccinated individuals. Am J Trop
Med Hyg 75 (Suppl 2): 46–55.

63. Molineaux L, Dietz K, 1999. Review of intra-host models of ma-
laria. Parassitologia 41: 221–231.

64. McKenzie FE, Bossert WH, 1998. The optimal production of
gametocytes by Plasmodium falciparum. J Theor Biol 193:
419–428.

65. Gordon R, 1998. Java Native Interface. Upper Saddle River, NJ:
Prentice-Hall PTR.

66. Grosso W, 2001. Java RMI. Sebastopol, CA: O’Reilly.
67. Smith T, Hii J, Genton B, Muller I, Booth M, Gibson N, Narara

A, Alpers MP, 2001. Associations of peak shifts in age-
prevalence for human malarias with bed net coverage. Trans R
Soc Trop Med Hyg 95: 1–6.

68. Cancre N, Tall A, Rogier C, Faye J, Sarr O, Trape JF, Spiegel A,
Bois F, 2000. Bayesian analysis of an epidemiologic model of
Plasmodium falciparum malaria infection in Ndiop, Senegal.
Am J Epidemiol 152: 760–770.

69. Hagmann R, Charlwood JD, Gil V, Ferreira C, do Rosario V,
Smith TA, 2003. Malaria and its possible control on the island
of Principe. Malar J 2: 15.

70. Diggle P, Gratton RJ, 1984. Monte Carlo methods of inference
for implicit statistical models. J R Statist Soc B 46: 193–227.

71. Kirkpatrick S, Gelatt CD Jr, Vecchi MP, 1983. Optimization by
simulated annealing. Science 220: 671–680.

72. Press WH, Flannery BP, Teukolsky SA, Vetterling WT, 1988.
Numerical Recipes in C: The Art Scientific Computing. Cam-
bridge, United Kingdom: Cambridge University Press.

73. Carneiro I, Smith T, Lusingu J, Malima R, Utzinger J, Drakeley
C, 2006. Modeling the relationship between the population
prevalence of Plasmodium falciparum malaria and anemia.
Am J Trop Med Hyg 75 (Suppl 2): 82–91.

74. Port GR, Boreham PFL, Bryan JH, 1980. The relationship of
host size to feeding by mosquitos of the Anopheles-gambiae
Giles Complex (Diptera, Culicidae). Bull Entomol Res 70:
133–144.

75. Beier JC, Oster CN, Onyango FK, Bales JD, Sherwood JA, Per-
kins PV, Chumo DK, Koech DV, Whitmire RE, Roberts CR,
1994. Plasmodium falciparum incidence relative to entomo-
logic inoculation rates at a site proposed for testing malaria
vaccines in western Kenya. Am J Trop Med Hyg 50: 529–536.

76. Greenwood BM, Groenendaal F, Bradley AK, Greenwood AM,
Shenton F, Tulloch S, Hayes R, 1987. Ethnic differences in the
prevalence of splenomegaly and malaria in The Gambia. Ann
Trop Med Parasitol 81: 345–354.

77. Modiano D, Petrarca V, Sirima BS, Nebie I, Diallo D, Esposito F,
Coluzzi M, 1996. Different response to Plasmodium falci-
parum malaria in west African sympatric ethnic groups. Proc
Natl Acad Sci USA 93: 13206–13211.

OVERVIEW 7



78. Dye C, Hasibeder G, 1986. Population dynamics of mosquito-
borne disease: effects of flies which bite some people more
frequently than others. Trans R Soc Trop Med Hyg 80: 69–77.

79. Smith T, Felger I, Tanner M, Beck H-P, 1999. Premunition in
Plasmodium falciparum infection: insights from the epidemi-
ology of multiple infections. Trans R Soc Trop Med Hyg 93
(Suppl): 59–64.

80. Struik SS, Riley EM, 2004. Does malaria suffer from lack of
memory? Immunol Rev 201: 268–290.

81. Deloron P, Chougnet C, 1992. Is immunity to malaria really
short-lived? Parasitol Today 8: 375–378.

82. Genton B, Betuela I, Felger I, Al-Yaman F, Anders R, Saul A,
Rare L, Baisor M, Lorry K, Brown G, Pye D, Irving DO, Smith
TA, Beck H-P, Alpers MP, 2002. A recombinant blood-
stage malaria vaccine reduces Plasmodium falciparum density
and exerts selective pressure on parasite populations in a phase
1-2b trial in Papua New Guinea. J Infect Dis 185: 820–827.

83. Gandon S, Mackinnon M, Nee S, Read AF, 2001. Imperfect vac-
cines and the evolution of pathogen virulence. Nature 414:
751–756.

84. Smith T, 2002. Imperfect vaccines and imperfect models. Trend
Ecol Evol 17: 154–156.

85. Collins WE, Jeffery GM, 1999. A retrospective examination of
the patterns of recrudescence in patients infected with Plas-
modium falciparum. Am J Trop Med Hyg 61: 44–48.

86. Reyburn H, Drakeley C, Carneiro I, Jones C, Cox J, Bruce J,
Riley E, Greenwood B, Whitty C, 2004. The epidemiology of
severe malaria due to Plasmodium falciparum at different
transmission intensities in NE Tanzania. LSHTM Malaria Cen-
tre R 2002–2003: 6–7.

APPENDIX 1
EQUATIONS OF THE EPIDEMIOLOGIC MODEL

INFECTION OF THE HUMAN HOST54

Ea(i,t), the age-adjusted entomologic inoculation rate
(EIR) for individual i at time t, is given by

Ea�i,t� = Emax�t�
A�a�i,t��

Amax
(1)

where, A(a(i,t)) is the average body surface area estimated for
an individual of age a(i,t) and Amax is the average surface area
of people � 20 years of age in the same population. Emax (t)
refers to the usual measure of the EIR computed from human
bait collections. The force of infection is then

��i,t� = Ea�i,t��S� +
1 − S�

1 +
Ea�i,t�

E*
� �Simm +

1 − Simm

1 + �Xp�i,t�
X*p

��p�
(2)

where Simm, X*p, E*, �p, S� are constants (Table 1) and:

Xp�i,t� = �
t−a�i,t�

t
Ea�i,��d�. (3)

The number of infections h(i,t) introduced in time step t, is
distributed as

h�i,t� ∼ Poisson���i,t�� (4)

TABLE 1
Model parameter values

Parameter Description Units/dimension Value

S� Lower limit of success probability of inoculations at high Ea(i,t) Proportion 0.049
E* Critical value of Ea(i,t) Inoculations/person-night 0.032
Simm Lower limit of success probability of inoculations in immune individuals Proportion 0.14
�p Steepness of relationship between success of inoculation and Xp(i,t) Dimensionless constant 2.04
X*p Critical value of cumulative number of entomologic inoculations Inoculations 1514.4
X*h Critical value of cumulative number of infections Infections 97.3
X*y Critical value of cumulative number of parasite days Parasite-days/�L × 10−7 3.5
X*v Critical value of cumulative number of infections for variance in parasite densities Infections 0.92
�m Maternal protection at birth Dimensionless 0.90
a*m Decay of maternal protection Per year 2.53
Dx Effect of concurrent co-infections Infections 0
�1 Effect of asexual density (lag 10 days) on expected gametocytemia (fixed) Dimensionless 1
�2 Effect of asexual density (lag 15 days) on expected gametocytemia Dimensionless 0.46
�3 Effect of asexual density (lag 20 days) on expected gametocytemia Dimensionless 0.17
	 Location parameter for the distribution of the ratio of gametocytes to asexual

parasites
Dimensionless 0.00031


 Scale factor for probability that a mosquito becomes infected at any feed Dimensionless 0.56
�0

2 Fixed variance component for densities [ln(density)]2 0.66
�g Standard deviation of the distribution of the ratio of gametocytes to asexual paraistes Dimensionless 3.91
� Factor determining increase in Y*(i,t) Parasites2 �L−2day−1 143,000
� Decay rate of pyrogenic threshold Year−1 2.5
Y*0 Pyrogenic threshold at birth Parasites/�L 296.3
Y*1 Critical value of parasite density in determining increase in Y* Parasites/�L 0.60
Y*2 Critical value of Y*(i,t) in determining increase in Y*(i,t) Parasites/�L 6502.3
Y*B1

Parasitemia threshold for severe episodes type B1 Parasites/�L 784,000
F0 Prevalence of co-morbidity/susceptibility at birth relevant to severe episodes (B2) Proportion 0.092
a*F Critical age for co-morbidity Years 0.117
1 Case fatality for severe episodes in the community compared to hospital Odds ratio 2.09
Qn Non-malaria intercept for infant mortality rate Deaths/1,000 livebirths 49.5
QD Co-morbidity intercept relevant to indirect mortality Proportion 0.019
x*MG Critical value of the simulated prevalence for ages 20–25 years Proportion 0.19
�max Upper limit of risk of neonatal mortality in primigravidae Proportion 0.011
x*PG Critical value of prevalence for neonatal mortality risk Proportion 0.25
�0 Intercept in anemia submodel Log odds −6.13
�P Effect of parasite prevalence Log odds 12.5
p* Critical value of parasite prevalence Proportion 2.84
�a1 Magnitude of age effect Per year 3.14
a* Critical age Years 3.66
�1 Age-prevalence interaction effect Log odds −0.75
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CHARACTERISTICS OF THE
SIMULATED INFECTIONS50

Each new infection j, initiated in individual i at time t0 is
assigned a duration of tmax, sampled from

ln��max�i,j�� ∼ Normal�5.13, 0.80� (5)

The log density in the absence of previous exposure at each
time point, � � 0,1,…,�max(i,j) of the infection j in host i is
then normally distributed with expectation

ln�y0�i, j, ��� = ln d�i� + ln�yG��, �max�� (6)

where yG(�,�max) is an empirical description of malari-
atherapy patients from the Georgia hospital and d(i) repre-
sents between-host variation drawn from a log-normal distri-
bution with variance �i

2.
We measure exposure to asexual blood stages with

Xy�i, j, t� = �
t−a

t
Y�i,�� d� − �

t0,j

t
y�i, j, �� d� (7)

where Y(i,�) is the total parasite density of individual i at time
� and y(i,j,�,) is the density in individual i for infection j at
time �, and

Xh�i,t� = �
t−a

t
h�i,�� d� −1. (8)

the expected log density for each concurrent infection
is then

E�ln�y�i, j, ���� = DyDhDm � ln�y0�i, j, ��� + ln� Dx

M�t�
+ 1 − Dx�

(9)

where M(t) is the total multiplicity of infection and

Dy =
1

1 +
Xy�i, j, t�

X*y

, (10)

Dh =
1

1 +
Xy�i,t�

X*h

, (11)

Dm = 1 − �m exp�−
0.693a

a*m
� (12)

and X*y, X*h, Dx, a*m, and �m, are further constants.
Variation within individual hosts is quantified by a term

�2
y(i,j,�), where

�y
2�i, j, �� =

�0
2

1 +
Xh�i, t�

X*v

(13)

and �2
0 and X*v are constants (Table 1). The simulated densi-

ties are specified using:

ln�y�i, j, ��� ∼ Normal�E�ln�y�i, j, ����, �y
2�i, j, ��� (14)

The total density at time t in host i is then the sum of the
densities of the various co-infections j i.e.

Y�i,t� = �
j

y�i, j, ��i, j�� (15)

MODEL FOR INFECTIVITY OF THE
HUMAN HOST49,53

Let

ϒ�i,t� = �1Y�i,t − 2� + �2Y�i,t − 3� + �3Y�i,t − 4� (16)

where t is in 5-day units, and

ln�yg�i,t�� ∼ Normal�ln�	ϒ�i,t��, �g
2� (17)

where �1,�2,�3,	,�g
2 are constants (Table 1). Define

Pr�yg�i,t� � y*g � = ��ln�	ϒ�i,t�� − ln�y*g �

�g
� = ��ln�ϒ�i,t��

�g
+ 	*�

(18)

where � is the cumulative normal distribution, yg* is the den-
sity of female gametocytes necessary for infection of the mos-
quito, and 	* � (ln(	) − ln(yg*))/�g. Then the proportion of
mosquitoes that are infected feeding on individual i at time t is

Im�i,t� = �Pr�yg�i,t� � y*g ��2 (19)

and the probability that a mosquito becomes infected at any
feed is:

�u�t� = 


�
i

�A�a�i,t��Im�i,t��

�
i

A�a�i,t��
(20)

where 
 is a constant scale factor.
Define �u

(0)(t) as the value of �u (t) in the simulation of an
equilibrium scenario to which an intervention has been ap-
plied. Let Emax

(0) (t + lv) be the corresponding entomologic
inoculation rate. �u

(1)(t) and Emax
(1) (t + lv) are the correspond-

ing values for the intervention scenario. Then

Emax
�1� �t + lv� =

Emax
�0� �t + lv� �u

�1��t�

�u
�0��t�

(21)

where l� corresponds to the duration of the sporogonic
cycle in the vector, which we approximate with two time
steps (10 days). (Emax

(0) (t + lv)/�u
(0)(t) is the total vectorial

capacity).

ACUTE MORBIDITY52,55

An episode of acute morbidity occurs in individual i, at
time t, with probability

Pm�i,t� =
Ymax�i,t�

Y*�i,t� + Ymax�i,t�
(22)

where Y* is the pyrogenic threshold and Ymax is the maxi-
mum density of five daily densities sampled during the five-
day time interval t. The pyrogenic threshold evolves over time
via:

dY* �i,t�
dt

=
�Y�i,t�

�Y*1 + Y�i,t���Y*2 + Y*�i,t��
− �Y*�i,t� (23)

with the initial condition Y* (i, 0) � Y*0 at the birth of the host
and �, �, Y*1 , and Y*2 are constants.
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We consider two different classes of severe episodes, B1 and
B2. PB1 (i,t) is the probability that an acute episode (A) is a
class B1 severe episode and is specified using

PB1
�i,t� = Pr�H�i,t� ∈ B1�H�i,t� ∈ A� =

Ymax�i,t�
Y*B1

+ Ymax�i,t�
(24)

where Y*B1
is a constant and H(i,t) is the clinical status.

The second subset of severe malaria episodes (B2) occur
when an otherwise uncomplicated malaria episode happens to
coincide with some other insult, which occurs with risk

F�a�i,t�� =
F0

1 + �a�i,t�
a*F

� (25)

where F0 is the limiting value of F(a(i,t)) at birth, and a*F is the
age at which it is halved.

The probability that an episode belonging to class B2 occurs
at time t, conditional on there being a clinical episode at that
time is PB2 (i,t) where

PB2
�i,t� = Pr�H�i,t� ∈ B2�H�i,t� ∈ A� = F�a�i,t�� (26)

The age and time specific risk of severe malaria morbidity
conditional on a clinical episode is then given by

PB�i,t� = PB1
�i,t� + PB2

�i,t� − PB1
�i,t�PB2

�i,t�, (27)

MORTALITY52

Malaria deaths in hospital are a random sample of those
severe malaria cases deemed to be admitted, with age-
dependent sampling fraction Qh(a), the hospital case fatality
rate, derived from the data of Reyburn and others.86

We estimate the severe malaria case fatality in the commu-
nity, Qc(a) for age group a with

Qc�a� =
Qh�a�1

1 − Qh�a� + Qh�a�1
, (28)

where  l, the estimated odds ratio for death in the commu-
nity compared to death in in-patients, is an age-independent
constant and Qh(a) is the hospital case fatality rate. Malaria
mortality is the sum of the hospital and community malaria
deaths.

The risk of neonatal mortality attributable to malaria
(death in class D1) in first pregnancies is set equal to 0.3µPG

where µPG is given by

�PG = �max�1 − exp�−
xPG

x*PG
��, (29)

where xPG is related to xMG, the prevalence in simulated
individuals 20–24 years of age via

xPG = 1 −
1

1 + �xMG

x*MG
� (30)

and x*MG and x*PG are constants (Table 1).
An indirect death in class D2 is provoked at time t, condi-

tional on there being a clinical episode at that time, with
probability PD2 (i,t) where

PD2
(i,t) � Pr(H(i,t)�D2|H(i,t)�A) and

PD2
�i,t� =

QD

1 + �a�i,t�
a*F

� (31)

where QD is limiting value of PD2 (i,t) at birth and a*F is a
constant. Deaths in class D2 occur 30 days (six time steps)
after the provoking episodes.

ANEMIA73

The prevalence of anemia, pA(a,t), in age group with mid-
age a, at time t is specified by

logit�pA�a,t�� = �0 +
�a1a*
a* + a

+
�PpP�a,t�

p* + pP�a,t�
+ �1pP�a,t� log�a�

(32)

where pP(a,t) is the prevalence of patent parasitemia in the
age group and �0,�P,p*,�al,a*,�I are constants.
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